Mapping approach and modelling of preventive measures to encounter groundwater flooding

Jesper Bjergsted Pedersen, Aarhus University & Per Rasmussen, Geological Survey of Denmark and Greenland

National Conference on Climate Adaption 2019 23rd of October 2019

City of Sunds, Denmark

What is the challenge in Sunds?

• Rising groundwater level resulting in flooding of basements/agricultural areas/green areas

What is the challenge in Sunds?

• Flooding is most likely due to change in climate (increased precipitation) and human behavior (renewal of sewage systems, abstraction etc.)

 Need for detailed information on hydrological framework at/around the city to make preventative measures -> DATA!

Boreholes min. 20 m

O Boreholes

Boreholes min. 20 m

O Boreholes

- WalkTEM (38 Measurements)
- **GCM** (84252 Measurements)

ERT (11 profiles)

- SkyTEM / WalkTEM
 - + Fast, effective, deep investigation (several hundred m)
 - + Large *footprint*, coarse resolution

- SkyTEM / WalkTEM
 - + Fast, effective, deep investigation (several hundred m)
 - + Large *footprint*, coarse resolution
- ERT
 - + High resolution, verified
 - ÷ Ineffective

- SkyTEM / WalkTEM
 - + Fast, effective, deep investigation (several hundred m)
 - + Large *footprint*, coarse resolution
- ERT
 - + High resolution, verified
 - ÷ Ineffective
- GCM
 - + Effective, high resolution
 - + Shallow exploration (5-8 m)

- SkyTEM / WalkTEM
 - + Fast, effective, deep investigation (several hundred m)
 - + Large *footprint*, coarse resolution
- ERT
 - + High resolution, verified
 - ÷ Ineffective
- GCM
 - + Effective, high resolution
 - + Shallow exploration (5-8 m)
- tTEM
 - + Effective, high resolution
 - + Shallow and intermediate exploration (upper 30 m of the soil as a minimum)

Technical details

- Measurement takes a few milliseconds resulting in 3-10 meters lateral resolution
- Depth of investigation 0-100 meters

Mapping details

- 10-20 km/hour ~ 3-5 m/s
- Line distance is typically 10-20 meters (spraying tracks distance)
- Coverage is 100-200 hectares per day

O tTEM / FloaTEM (30595 Measurements)

O tTEM / FloaTEM (30595 Measurements)

Modelling of preventive measures to encounter groundwater flooding

- Hydrological model
- Detailed description of surface water system

From geological to hydrological model

Detailed geological model

- 103 geological layers
- >7 mio voxels
- Each voxel: 25 x 25 x 2 m

Hydrological model

• 9 calculation layers

The challenge: Flooding

Three causes:

- Existing high groundwater level
- Renovation of leaking sewer pipes
- Predicted wet future climate

Source: AquaClew http://aquaclew.eu)

Renovation of sewer pipes

Depth of drainage system (m b.g.s.)

Change in depth to groundwater table (m)

Preventive measures to encounter groundwater flooding

- 1. Fixed water level in Sunds Lake
- 2. Plantation of coniferous forest
- 3. Drain pipes in town The 3rd pipe
- 4. Combined effect of measures

• Effect of wet climate prediction

Fixed water level in Sunds Lake

 Lowering the water table in Sunds Lake to "the summer level"

Change in depth to median groundwater level (m)

Plantation of coniferous forest effect on groundwater table

67 ha

Test of forest plantation in 3 areas around the town

Change in depth to median groundwater level (m)

Plantation of coniferous forest effect on groundwater table

395 ha

185 ha

Change in depth to median groundwater level (m)

Sunds - TopSoil Forest 210 ha Forest 118 ha Forest 67 ha Sewered area Combined old sewer system ZZZ Lake River Road Sunds model area d-m-15 3cx-14x Change in depth to groundwater table (m) 0.41 - 0.50 0.31 - 0.40 0.21 - 0.30 0.11 - 0.20 0.06 - 0.10 0.01 - 0.05 -0.14 - 0.00

Drain pipes in town – The 3rd pipe

- Drains established drains whole urban area
- Same depth as existing sewer pipes

Change in depth to median groundwater level (m)

The combined effect measures

Change in depth to median groundwater level (m)

Effect of wet climate prediction

- A medium wet climate scenario in far future (2081-2100)
- Compared to the situation today (1996-2016)

Change in depth to median groundwater level (m)

To conclude ...

- Installing drainage systems in the city
- Make the city more green?
- Combination of measures

