DecomTools: Eco-innovative concepts for the end of offshore wind energy farms lifecycle - End-of-Life Planning of OWTs - a logistical perspective -**Marc Hillers** 19.01.2023

Introduction

- "2 decommissioning cycles"
 - 1st Cycle: Already ongoing, with a relatively low volume of OWTs
 → "Test case" for decommissioning strategies and methods
 - 2nd Cycle: Expected to begin ~2030 corresponds to large volumes in the NSR
 - Requirements: Fully developed solutions and decommissioning strategies

Figure 1: Expected Year of Decommissioning for Offshore Wind Turbines in the NSR

Kruse, M. (2019): Market Analysis Decom Tools 2019, [online], available at: https://northsearegion.eu/media/11753/marketanalysis_decomtools.pdf

"Decommissioning Process"

Uncertainties along the entire Supply Chain

Regulations

 Ambiguity of legislative conditions

Technology

 Decommissioning Techniques and Equipment

Processes

Procedural uncertainties

Recycling

 Especially for blades

Reusability

 Which components and materials can be re-used and sold?

Finances

 Sufficient budgets for decommissioning?

Timing

 What/When is the right timing for decommissioning?

Vessel Availability

 Will there be enough sufficient vessels to do the decommissioning?

Environmental Impacts

- Legislatations
- Impacts
- . . .

Ports

 Crucial hubs (Operational, Distributional, Processing, Storing, Recycling,)

Weather

- Wind
- Seastate

Logistical Simulation

Simulation is a method of replicating a real system with all dynamic processes in a model that can be experimented with, in order to derive findings that can be applied to reality.

Pendulum System

Part-by-Part-Configuration

Part-by-Part-Configuration

Bunny-Ear-Configuration

Bunny-Ear-Configuration

Star-Configuration

Star-Configuration

Logistical Systems and Dismantling Strategies

Process Overview

Offshore Process Overview

Onshore Process Overview

Environmental Aspects and Simulation Parameters

Parameters to consider:

- Amount of OWT
- Dismantling Strategy
- Dismantling Process Times
- Available Vesseltypes and –characteristics in different stages
- Ports and their capacities
- Component-Handling
- Onshore Supplychain
-

Basestudy:

- 80 OWT
- 1x MetMast
- 1x OHVS
- HR1-Location: ~20km of the Danish coast

Simulation Outputs – Offshore– Ø Runtime

Simulation Outputs – Offshore – Ø Costs

Simulation Outputs – Offshore – Ø CO2-Emissions

European Regional Development Fund EUROPEAN UNION

- Logistical Simulations can give a good overview about the supply chain or logistics strategy and may even offer new perspectives
 - The base of data is crucial! → "The more realistic the data basis, the more realistic are the results"

- Nearly Impossible to create "one solution fitting all"
 - Appropriate Logistic arrangements are essential!

Want more? ;-)

