

European Union European Regional Development Fund

Hydrogen and Fleet Decarbonisation

Sandra Omondi Aberdeen City Council

16.05.2023

SMART-HY-AWARE aims to promote hydrogen-electric mobility by tackling main infrastructural, technological (range anxiety related) and market uptake barriers related to hydrogen for electro-mobility addressing the transition to a low carbon economy.

Refuelling Infrastructure

• 2 stations delivering 130 and 360kg/ day

HY AV

Interreg Europ

- 350 & 700 bar capable
- Refuel cars, vans, buses, large vehicles
- Both 'green tariff' stations

H2 Aberdeen Vehicles

One of the most varied fleets in Europe

Types of Technologies

Battery Electric Vehicle (BEV)	Derives all its power from electricity provided by an external electrical source such as a chargepoint and stored in an on-board battery. Examples: Nissan Leaf, Nissan e-NV200 van.
Fuel Cell Electric Vehicle (FCEV)	Derives its power from the conversion of hydrogen and oxygen to electricity in a fuel cell. Typically has a small hybrid battery to capture regenerative braking energy and provide peak power support to the fuel cell. Examples include the Toyota Mirai and Hyundai Nexo cars.
Fuel Cell Range Extended Electric Vehicle	Have larger batteries which can be charged with electricity from a chargepoint, as well as a fuel cell which runs on hydrogen. Either or both power sources can be used.
(FCREEV)	Examples: Symbio (now Renault) Kangoo ZE H2 light duty van.
H2 Internal Combustion Engine (H2ICEd) aka	These vehicles co-combust hydrogen and diesel in a conventional engine.
dual-fuel	Examples: van and refuse collection vehicle (RCV) conversions by ULEMCo.

Fleet Review

- Independent fleet review: 5 Local Authorities, 5 public & 2 private sector entities
- Comprises ~4,000 vehicles
- 89% fleet is ZEV compatible (57% BEV, 32% FC only)
- Annual h2 demand: 745 tonnes, 92% of which from 7.5t or larger
- OEM FC availability is a challenge to 2025

All NE Scotland Fleets - ZEV Compatibility

	# of vehicles	BEV % Compatible	% FCEV Only Compatible	% Not ZEV Compatible	Annual Electricity (MWh)	Annual H ₂ (tonnes)
Small Car	302	95%	2%	3%	575	1
Medium Car	195	85%	7%	8%	318	1.7
Medium MPV	35	71%	17%	11%	63	0.2
Midsized SUV	7	100%	0%	0%	15	0
Midsized Commercial SUV	9	67%	33%	0%	23	0.8
Large Car	14	100%	0%	0%	31	0
Large 4x4 / SUV	122	59%	33%	8%	206	15
Small Van	905	53%	34%	12%	2,106	12
Medium Van	318	60%	28%	12%	1,197	6
Large Van (< 3.5t GVW)	1,000	66%	24%	10%	4,023	17.5
Large Van (> 3.5t GVW)	263	53%	20%	27%	814	4
Rigid Truck 2 axles (7.5t GVW)	88	14%	86%	0%	54	82
Rigid Truck 2 axles (18t GVW)	275	48%	47%	4%	1,516	153
Rigid Truck 3 axles (26t GVW)	321	12%	74%	13%	418	403
Rigid Truck 4 axles (32t GVW)	35	11%	63%	26%	37	46.5
Tractor Unit 4 x 2 (40t GCW)	1	0%	0%	100%	0	0
Tractor Unit 6 x 2 (44t GCW)	9	0%	11%	89%	0	2
Tractor Unit 6 x 4 (44t GCW)	3	0%	0%	100%	0	0
Total	3,902	57%	32%	11%	11,396	745

Total Cost of Ownership

Total Cost of Ownership Analysis

- Due to high fuel prices, hydrogen vehicles are at a cost disadvantage when compared to the diesel and battery electric vehicles (both dual fuel and fuel cell alternatives).
- Thanks to the zero tailpipe emissions from the EVs there are negligible social damage costs.
- Fuel savings can produce overall cost savings from BEVs, if the rounds are lengthened.

Operational Suitability

BEVs or FCEVs?

Types of H2 vehicles available in the UK today

Hyundai	£		69 k	Toyota	£	65 k
Nexo	Seats		5	Mirai Gen2	Seats	5
INEXU	Range		414 miles		Range	400 miles
	H2		6.3 kg (3 tanks)		H2	5.6 kg (2 tanks)
	H2 P		700 bar		H2 P	700 bar
ETA-	Bat		40 kWh		Bat	1.24 kWh
	FC Star size	ck	95 kW		FC Stack size	128 kW
Symbio RE Kangoo	£	60/m		ULEMCo dual fuel H2ICed - diesel	£ Seats	POA 2
	Seats	batte	ry/H2 rental)	Ford Transit	Range	95 - 135 miles
	Range	100 EV, 250 EV- H2 miles		Indu Coursel Plan	H2	3.2 kg (2 tanks)
	H2	1.8 kg 350 bar			H2 P	350 bar
	H2 P				Engine size	e 2.2 litre
	Bat	22kW	/h	(8)	Engine typ	e Euro 5
	FC Stack size	5kW				2010 0

Vehicles

Hyundai Xcient			
Ilyunuar Acient	£	lease	
	GVW/GCW	19t / 36t	
The second se	Config/Cab	4x2 / Day	
	Range	248 miles	
	H2	32 kg (7 tanks)	
	H2 P	350 bar	
	Bat	73 kWh	
Switzerland	FC Stack size	190 kW	

Scania£GVW/GCWConfig/CabRangeH2H2 PBat

Asko demonstration (2020)

Config/Cab	4x2 / Day
Range	310 miles
H2	33 kg
H2 P	350 bar
Bat	56 kWh
FC Stack size	90 kW

demo

??/27t

Nikola Tre (CNH/IVECO)

(2019)

(2023?)

£	Lease?
GVW/GCW	ТВА
Config/Cab	6x4/ Sleeper
Range	500 miles +
H2	ТВА
H2 P	ТВА
Bat	ТВА
FC Stack size	120 kW (TBC)

DAF(with Shell/Toyota)

1 prototype only

£	H2SHARE
GVW/GCW	28t
Config/Cab	6x2
Range	250
H2	30 kg
H2 P	350 bar
Bat	72 kWh
FC Stack size	88 kW

Hydrogen Vehicle Technology Roadmap				
cenex	2020 First CAZ outside of London operational	2025 ZEZs likely to appear	2030 ZEZs likely to be common place and wide spread	
Cars	Few vehicles available. Large executive saloon cars mainly. Trial phase.		Technology developing but still limited to large executive saloons. Subsidies needed for viability.	
LCVs Small	Hydrogen REEVs & dual-fuel being trialled.	F	CEV trial phase. Technology not fully developed.	
LCVs Large	Hydrogen REEVs & dual-fuel being trialled.	F	CEV trial phase. Technology not fully developed.	
RCVs	UK local authorities trialling dual-fuel RCVs with FCEV technology closely monitored		FCEVs enter market in the UK. Limited numbers at premium prices. Economic viability dependant on fuel cost.	
Rigid HGVs	Dual-fuel being trialled in UK.		FCEV trial phase. Technology not fully developed.	

Public Sector Fleet

Ultra-low emission public sector fleet and buy-in by private sector partners by 2025

H2 Demand Mapping. All Fleets. Current/Potential NE HRS Locations Based on Demand

- (Map oriented E-W for visibility)
- Two current and two potential H₂ sites in Aberdeen
- Two Aberdeenshire sites (Inverurie and Peterhead)
- One in Inverness
- One in Elgin
- One in Forfar

Fleet Opportunities

- Hydrogen Refuelling Network
- Lower market maturity
- Whether hydrogen works for your fleet depends on many factors:
 - location: city or rural
 - capital outlay
 - daily duty cycle, payload, distances covered, mileage
 - shorter refuelling times
 - availability of chargepoint or refuelling infrastructure
 - turnaround in drivers/ shifts
 - back to base or onward journey
- Learning and collaboration with the public and private sector

European Union European Regional Development Fund

