

Innovative rain gardens to filter microplastics from stormwater

Karin Karlfeldt Fedje

Renova AB and Chalmers University of Technology

karin.karlfeldt@chalmers.se

Glenn Johansson PhD student project 2021-2026

Innovative rain gardens for sustainable and effective treatment of urban stormwater polluted with microplastics, organic pollutants and metals

> Participants: Chalmers, COWI, Renova, AquaTeam, and VTI

> > Funding: FORMAS, and Immerse

Flooding...

...and pollution!

Traffic is the major source of microplastics

https://research.chalmers.se/publication/532025/file/5 32025_Fulltext.pdf

To reduce the spread of pollutants, stormwater should be treated as close to the source as possible.

-City of Gothenburg

Microplastics in urban stormwater

Fig. 11. Plastic, paint and TBMP in stormwater, measured as flow-weighted rain event mean concentration. Boxes to the left relate to particles \geq 20 µm and boxes to the right show particles \geq 100 µm.

Ref: Järlskog I., Strömvall A-M., Magnusson K., Gustafsson M., Polukarova M., Galfi H., Aronsson M., Andersson-Sköld Y. (2020). Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. https://doi.org/10.1016/j.scitotenv.2020.138950

Microplastics in urban stormwater (≥10um)

	Stormwater sediment E6, µg/kg DS	Stormwater E6, μg/L	
Polyisoprene (PI)	142 000	130	
Polybutadiene (PB)	11 500	90	
Polyethylene (PE)	67 700	140	
Polypropylene (PP)	11 800	12	
Polyvinylchloride (PVC)	10 200	120	
Polystyrene (PS)	6 700	10	
Polymethylmetacrylate (PMMA)	2 000	<1,0	
Polyeteneterphthalate (PET)	750	<1,0	
Polyamide 6 (PA6)	<30	<1,0	
Polycarbonate (PC)	<30	<1,0	

PI and PB: mainly TRWP (tire and road wear particles)
PE, PP, PVC, and PS: e.g. car bumpers, food packaging, pipes
PMMA (Plexiglas): e.g. exterior vehicle lights
PET: e.g. bottles

Phytoremediation and filters

Cleaner water and material?!

CC BY-NC-ND

Aim

Contribute to a green and circular economy

Green economy

Green infrastructure

Ofe

Contribute to a green infrastructure

Scientific questions

• Can raingardens in combination with different

filter material and plants purify polluted

stormwater?

- With and without plants
- Control with plants

• What and how much of the pollutants are extracted by the plants?

- How are the pollutant adsorption processes
 - working in the different filters?
 - ✤ Metals
 - Microplastics
 - Nutrients
 - Organic pollutants

- Is it possible to recycle the metals?
- Can an optimal layout be designed?

Demands on plants

•Extract and/or degrade

- ✤ Metals
- Microplastics
- Organic pollutants

•Nordic climate

•Dry and rainy periods

•Large biomass

Filters

Control

- 1. Sandy loam with pumic stone (Top layer)
- 2. Sandy loam mixed with 15% compost
- 3. Coarse sand
- 4. Fine gravel

Peat and Bio char

2a. Soil mixed with peat/bio char (40%)2b. Peat/bio char

Ash

2a. Soil mixed with ash (50%) and compost (15%)

2b. Peat

2c. Bio char

Height: 125 cm Diameter: 100 cm

Setup srt srt P1 B1 A2 P3

25%

B2

A1

yt,

P2

P3

A3

AVI

Results

May 2022

October 2022

- The plants are growing!
- Mainly water analyses
 - Fundamental characterization e.g. pH, redox, DOC,...
 - Metals, nutrients, organic pollutants, and microplastics
- Variations in untreated stormwater
- No differences with and without plants

Results Particulate matter and nutrients

Particulate matter

- Particulate matter decreases
- Difference between filter types

Nutrients

- High in the beginning
- Concentrations in effluents decrease with time
- Biochar \rightarrow lowest release

control peat ash biochar

January 2023

Results

Organic pollutants and metals

Organic pollutants (aliphates and PAHs)

- Decreased concentrations with time in all filters (Often <detection limit)
- Approx at least 10 times reduction in effluent vs influent
- Long aliphates (>C16-35) highest in biochar and peat
- PAHs highest in ash

Metals (e.g. Zn, Cu, Pb, Co, and Ni)

- Decreased concentrations with time
- Efficient reduction
- Variation between filters and metals
- All metals <guidelines except Cu
- Only biochar reduces Cu to <guideline

Results Microplastics (<10	um)	Reduction of all microplastics!		
	Influent % quantified >1.0 μg/L, n= 7 ^b	Effluent % quantified >1.0 μg/L, n= 34	Filter types, >1,0 μg/L	
Polyisoprene (PI)	57	6	Ash and peat	
Polybutadiene (PB)	57	n.a.		
Polyethylene (PE) ^a	100	71	All filter types incl control	
Polypropylene (PP) ^a	86	71	All filter types incl control	
Polyvinyl chloride (PVC)	43	n.a.		
Polystyrene (PS)	57	15	All filter types incl control	
Poly(methyl methacrylate) (PMMA)	n.a. ^c	3	Peat	
Polyethylene terephthalate (PET)	14	n.a.		
Polyamide 6 (PA6)	n.a.	n.a.		
Polycarbonate (PC)	14	9	Ash, peat, and control	

^aPotential contamination from filter materials; ^bTotal number of samples analyzed; ^cUnder the limit for quantification

Results Microplastics

February 2023

		Influent, ug/L	Control, ug/L	Ash, ug/L	Biochar, ug/L	Peat, ug/L
→	PI	460	<1.0	<1.0	<1.0	<1.0
	РВ	250	<1.0	<1.0	<1.0	<1.0
	PE	130	<1.0	<1.0	1.5	2.9

Good cleaning of microplastics!

Conclusions, this far...

- Pollutants i.e. metals, organics and microplastics, and nutrients are identified in urban stormwater
- All plants survived the first cultivation season
- All filters work well

- Pollutants are efficiently removed from the stormwater
- Small microplastic particles may pass the filters

Continued research

2023

- <10 um microplastic particle size analyses
- Performance under non-favourable conditions
 - Wet periods and low temperatures (winter)
 - More pollutants in the stormwater
 - Less active plants
 - Dry periods and high temperatures (dry summer)

2024

- The processes in soil, microbiology, mycorrhiza, and plants
- Analyses of filter materials
- Recycling of metals
- Performance over time

Thank you for your attention!

Urphonor

Alle & Mada --- 6

DOON